

1 **Seed vernalization and gibberellic acid interact to affect life cycle type in**
 2 **facultative winter annual Canadian horseweed (*Erigeron canadensis*)**

4 **Authors:** Robin Waterman^{1*}, Brooke Catlett^{1,2}, Ishwari Bhatt^{1,3}, Georgia Edmonds^{1,3}, Jeffrey K.
 5 Conner¹

7 ¹ Kellogg Biological Station and Department of Plant Biology, Michigan State University,
 8 Hickory Corners, MI 48823

9 ² Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, IL, 62901

10 ³ Kalamazoo Area Mathematics and Science Center, Kalamazoo, MI, 49008

11 *Corresponding author: waterm29@msu.edu

12 **Abstract**

- 13 • *Background and Aims:* Plants display enormous variation in the phenological traits that
 14 make up their life cycle both within and between populations. Facultative winter annual
 15 species are particularly interesting because they can adopt either a fall-emerging/spring-
 16 flowering or spring-emerging/summer-flowering life cycle at the population level via
 17 evolution or at the individual level via within-generation and transgenerational plasticity.
 18 We hypothesized that the growth hormone gibberellic acid (GA) may be a mechanism by
 19 which these plants adjust their life cycle in response to cold temperatures.
- 20 • *Methods:* We conducted growth chamber and greenhouse experiments using the
 21 facultative winter annual agricultural weed *Erigeron canadensis* (horseweed) to
 22 investigate the interactive effects of genetic variation; transgenerational responses to
 23 parent plant life cycle; and plastic responses to temperature, light, and GA treatments.
- 24 • *Key Results:* We found that contrary to a prior report, exposing imbibed seeds to 3-4
 25 weeks of cold (i.e., seed vernalization) does not always result in summer annual type
 26 growth, with considerable variation found among field-collected seeds from 10
 27 populations. Further, we found that seed vernalization and exogenous application of GA
 28 both tended to increase summer annual characteristics, interacting in ways that were
 29 largely consistent with the hypothesis that GA is a mechanism for cold-induced life cycle
 30 differentiation. Light treatment did not significantly affect life cycle traits, while parent
 31 life cycle type had marginal effects on offspring life cycle type. Finally, genetic variation
 32 among and within sites explained far less of the variation in life cycle traits than the
 33 plastic responses to seed vernalization and GA treatments.
- 34 • *Conclusions:* Our study proposes that the seasonality of this harmful agricultural weed is
 35 influenced by a GA-mediated response to vernalization of seeds during winter, yet
 36 highlights the need for further study, given the variability in this response.

37
 38 **Key Words:** weed ecology, phylogeny, life cycles, plasticity, genetic variation, *Erigeron*
 39 *canadensis*, *Conyza canadensis*, horseweed, maretail, seed vernalization, gibberellic acid
 40 (GA), winter annual

41 Introduction

42 Phenology is the timing of recurring events in organismal life cycles. Phenological traits
 43 in plants include time of emergence, flowering, and senescence. The practical applications of
 44 studying plant phenology have long been recognized by agricultural scientists (Huberman 1941),
 45 and a growing number of studies in recent decades have focused on documenting phenological
 46 shifts in response to anthropogenic climate change (Forrest and Miller-Rushing 2010). Such
 47 shifts often serve as crucial mechanisms by which plants become or remain well-adapted to their
 48 environments. Plants may plastically adjust their phenology in response to environmental cues
 49 received during their own (within-generation plasticity) or their parent's (transgenerational
 50 plasticity) lifetime (Auge et al. 2017). In addition, plant populations may evolve in response to
 51 selection on phenological traits (e.g., Hall and Willis 2006).

52 While incremental changes in plant phenology have been widely studied, categorical
 53 changes in life cycle type have received less attention. Plants are typically classified as annuals if
 54 they complete their life cycle in one year, biennials if they complete their life cycle in two years,
 55 or perennials if they complete their life cycle in more than two years. Annual plants can be
 56 further subdivided into summer annuals, which emerge in spring and reproduce by fall; and
 57 winter annuals, which emerge in fall, overwinter as a rosette, and reproduce from spring to
 58 summer. Facultative winter annuals can adopt either a winter or summer annual life cycle in
 59 response to different environmental conditions at the level of the population via evolution
 60 (Meyer et al. 2004, Bloomer and Dean 2017, Charbonneau et al. 2018) and at the level of the
 61 individual via plasticity (Sans and Masalles 1993, Lu et al. 2014). Both mechanisms often co-
 62 occur (Best and Mc Intyre 1976, Landers 1995, Garrison 2024). Furthermore, nongenetic
 63 transgenerational plasticity (i.e., parental effects) may also play a role in determining offspring
 64 life cycle type (Mennan and Ngouajio 2006, Lu et al. 2016, Kanomanyanga et al. 2025). The
 65 effects of all of these factors on life cycle differentiation are rarely studied together, making it
 66 difficult to compare their importance or look for interactions between genes and environment.

67 A change to the biosynthetic regulation of the plant growth hormone gibberellic acid
 68 (GA) is a promising proximal mechanism by which environmental or genetic variation
 69 influences life cycle differentiation. This hormone has been found to play a key role in
 70 germination, stem elongation, and flowering initiation (reviewed in Gupta and Chakrabarty
 71 2013; and in Shah et al. 2023), which are all important parts of life cycle differentiation.
 72 Exogenous GA application has been found to override normal photoperiod or temperature
 73 requirements for flowering in at least 42 species of rosette-forming summer annual, winter
 74 annual, biennial, and perennial plants (reviewed in Lang and Reinhard 1961; and in Zeevaart
 75 1983). One study showed that the exogenous application of GA accelerated the flowering of
 76 winter annual, but not summer annual ecotypes of *Raphanus raphanistrum*, suggesting GA
 77 upregulation as a mechanism of evolved rapid summer annual flowering (Garrison 2022).
 78 Further, *Chrysanthemum morifolium* summer-flowering mutants were found to have higher
 79 endogenous levels of GA than normal fall-flowering plants (Deng et al. 2017).

80 The present study uses the facultative winter annual *Erigeron canadensis* to investigate
 81 the contributions of genetic variation, transgenerational plasticity, within-generation plasticity,
 82 and hormonal regulation to life cycle differentiation in this species. Results from a prior study
 83 suggest that winter vs. summer annual life cycle differentiation can be explained as a plastic
 84 response to seed vernalization, in which imbibed seeds are exposed to cold conditions that
 85 simulate winter, similar to seed stratification but used to induce flowering rather than break
 86 dormancy (Schramski et al. 2021). The authors subjected seeds sourced from summer annual

87 parents growing in two Michigan agricultural fields at each of two sites to various temperature,
 88 photoperiod, intraspecific competition, light level, soil moisture, and vernalization treatments
 89 and found that only seed vernalization affected life cycle type, with four weeks at 4°C sufficient
 90 to cause all plants to be classified as summer annuals. Despite this compelling finding, it is
 91 limited by having few populations, few individuals per population, and only one parental
 92 environment, meaning that possible genetic and transgenerationally plastic contributions to the
 93 response remain unclear.

94 We first tested whether cold-vernalizing seeds would produce summer annual plants
 95 across a broader sample of populations from Michigan, grown in a common greenhouse
 96 environment (Fig. 1A). We then conducted a growth chamber experiment in which we crossed
 97 the seed source factors of population, line, and parent type (field summer annual, greenhouse
 98 summer annual, or greenhouse winter annual) with seed vernalization and gibberellic acid
 99 treatments (Fig. 1B). As in Schramski et al. (2021), we grew plants until the juvenile stage and
 100 categorized them by appearance into life cycle types. Given the relatively continuous range of
 101 variation we observed, we complemented the categorical data with quantitative measures of leaf
 102 roundness and plant height growth rate, since rosette-forming winter annuals make rounder
 103 leaves and remain close to the soil surface prior to bolting. In our follow-up greenhouse
 104 experiment, we grew a smaller sample of plants but followed them until senescence, allowing us
 105 to measure the critical life cycle trait of flowering time (Fig. 1C). In this experiment, we tested
 106 the crossed effects of seed vernalization, GA, and light level. We also included seeds collected
 107 from one of the same sites used in Schramski et al. (2021) to rule out the possibility of divergent
 108 results between our experiments arising from population-specific responses.

109 We made the following hypotheses and predictions: 1) We hypothesized that life cycle
 110 type differentiation in horseweed is primarily plastic based on Schramski et al.'s consistent
 111 results among their two collection sites, and thus we expected to find little variation explained
 112 among or within populations. 2) We hypothesized that plastic growth type differentiation could
 113 be explained by a combination of a) parent life cycle type, b) offspring seed temperature, and c)
 114 offspring light environment. Specifically, we predicted that summer annual characteristics would
 115 be greatest in offspring of winter annual parents, seeds exposed to winter-mimicking seed
 116 conditions, and plants grown in sunny conditions given that summer annual plants germinate in
 117 the spring with little competitor biomass present after winter. 3) We hypothesized that the effects
 118 of seed vernalization are at least partially mediated by upregulation of GA. Based on this, we
 119 first predicted that plants treated with GA would be more likely to show summer annual
 120 characteristics. We then predicted that GA would have little effect on seed-vernalized plants
 121 already upregulating GA, and seed vernalization would have little effect on plants already
 122 receiving increased GA.

123 Overall, our study aims to provide a more complete picture of the factors that influence
 124 variation in horseweed life cycle type, serving as a useful case study for future studies of life
 125 cycle types in other species and providing insight for managers of this harmful agricultural weed.
 126

127 **Materials and Methods:**

128 *Study System*

129 *Erigeron canadensis* L. (syn. *Conyza canadensis*, Canadian horseweed, or marestail;
 130 hereafter horseweed) is a weedy annual plant in the Asteraceae family that is native to Central
 131 and North America (Weaver 2001). It now commonly infests agricultural fields and disturbed
 132 habitats in temperate zones across the world. Horseweed forms wind-dispersed, primarily self-

133 fertilized seeds (estimated at 96%, Smisek 1995). It is considered a facultative winter annual
134 because it can adopt a winter annual or summer annual life cycle. While there seem to be peaks
135 of emergence in the fall and spring, the species has wide emergence and flowering windows
136 (Main et al. 2006, Tozzi and Van Acker 2014). Plants classified as winter annuals generally form
137 a low-to-the-ground rosette for overwintering, whereas those classified as summer annuals skip
138 the rosette stage by immediately growing upright. However, there is continuous variation in the
139 degree to which plants form a rosette and the life cycle types are not morphologically
140 distinguishable at flowering, since any rosette leaves have senesced by this point. Highly
141 contrasting proportional spring vs. fall emergence has been reported from nearby sites (Main et
142 al. 2006), and there does not appear to be a clear latitudinal pattern in life cycle proportions (e.g.
143 4-24% summer annuals at 36°N, Main et al. 2006; 92-100% at 39°N, Davis and Johnson 2008;
144 38-32% at 45°N, Buhler and Owen 1997). However, these studies demonstrated that the two life
145 cycle types usually co-occur in the same field. There are also observational reports that the
146 summer annual life cycle is becoming more common in Michigan (Schramski et.al. 2021).
147

148 *2021 field collections and 2022 greenhouse common garden*

149 In the fall of 2021, seeds were collected from 30 individuals from each of 10 sites (except
150 for 1 site with just 23), spread across Michigan's lower peninsula (see Fig 1A and Table S1 for
151 site details). These 293 field parents were presumed summer annuals given their seed production
152 in fall. The self-fertilized seeds produced by a given parent plant are likely highly homozygous so
153 we refer to them as lines. Seeds were stored in envelopes with desiccant at 5°C until used. In
154 May 2022, approximately 50 seeds per line were sown in 200-cell plug trays and vernalized in a
155 growth chamber set to 4°C and 8-hour daylength for three weeks. Trays were then moved to a
156 greenhouse at the Kellogg Biological Station (Hickory Corners, MI), thinned to up to five
157 seedlings per line, and transplanted at the first true leaf stage into 16.5-cm-diameter pots filled
158 with SureMix potting soil (Michigan Grower Products, Inc.). Pots were thinned to one plant
159 when leaves started to substantially overlap. Plants that had not bolted by the end of August
160 (about 11 weeks since movement to greenhouse) were vernalized for 35 days in a growth
161 chamber in the same conditions as those used for seed vernalization. A fungicide soak was
162 applied to the vernalized plants to prevent the spread of fungal root rot. Plants were assigned to
163 one of three categorical growth types based on visual assessment by the same observer about 1
164 week after emergence and updated about 9 weeks after emergence. "Rosette" types had a basal
165 circular arrangement of dark green, round leaves; "Upright" types had lighter and more elongated
166 leaves arranged along a visible stem (i.e., caulescent); "Intermediate" types fell somewhere
167 between the Rosette and Upright types in their characteristics. Of the 293 sown lines, 228
168 produced a plant that survived to flower.
169

170 *2023 Growth Chamber Experiment*

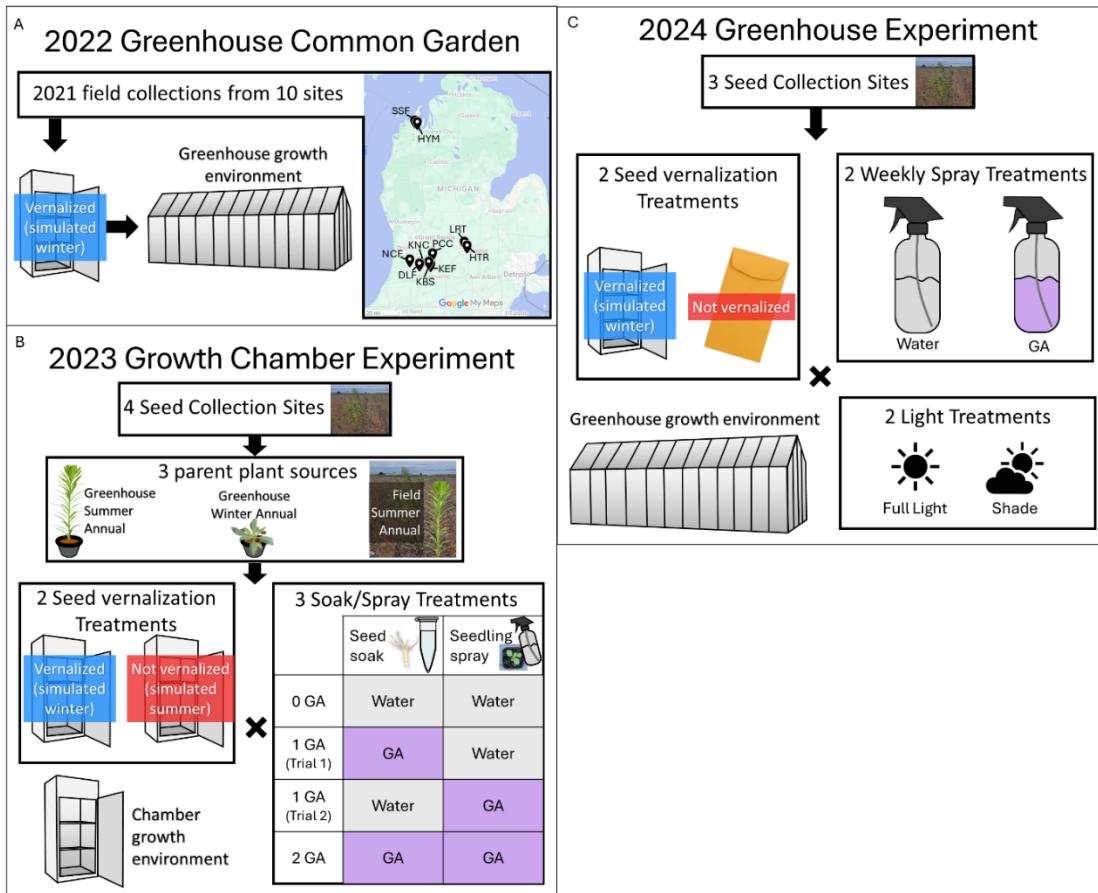
171 In this experiment, we tested the effects of seed vernalization and gibberellic acid
172 treatments, along with the seed source factors of population, line, and parent type on juvenile
173 plant life cycle type traits (Fig. 1B). Seeds were sourced from six lines from each of a subset of
174 four of the sites (DLF, KNC, NCF, and PCC; Table S1). Because we did not have seeds from the
175 same line exhibiting different life cycle types in the same generation, we included offspring of
176 three parent plant groups: 2021 field summer annual, 2022 greenhouse summer annual, and 2022
177 greenhouse winter annual (those requiring rosette vernalization to flower). Comparing the latter
178 two groups tests for transgenerational parental effects of life cycle type while controlling for

179 other possible transgenerational parental effects, but not for effects of genetic variation due to
180 line identity. Comparing the first and last group tests for transgenerational parental effects of life
181 cycle type while controlling for genetic variation, but not for possible transgenerational effects
182 from the field vs. greenhouse environment. Eighteen replicate seeds from each of the four sites,
183 three families, and three parent source types were randomly assigned to one of two vernalization
184 treatments and one of three GA treatments (detailed below), conducted in two trials, initiated 15
185 days apart (4 sites x 3 parent types x 3 lines x 2 vernalization treatments x 3 GA treatments x 3
186 individuals x 2 trials = 1296 total). A total of 846 seeds emerged and survived until data
187 collection (65%).

188 We tested the effects of GA applied as a seed soak, a cotyledon spray, neither, or both.
189 Both trials included 0, 1 and 2 applications of GA, but due to limited space, we could not include
190 all four combinations of seed soak and leaf spray in both trials. In Trial 1, the single GA
191 application was the seed soak, while in Trial 2 it was the leaf spray. Our results focus on the
192 comparison between plants that received no GA (“**Water**”) with those that received both the GA
193 seed soak and GA leaf spray (“**GA**”), which was replicated across trials. Seeds were soaked in
194 either a GA solution (1 g/L, Purdom and Glover 2017) or in distilled water for 24 hours at room
195 temperature. At the point of cotyledon emergence, seedling leaves were sprayed with
196 approximately 0.25 mL of either a GA solution (0.035 g/L = 10^4 M, Khan et al. 2006) or distilled
197 water.

198 After completing their soaking treatments, seeds were sown onto the surface of 200-cell
199 plug trays filled with moistened SureMix potting soil, with one tray per treatment (3 GA
200 treatments x 2 vernalization treatments x 2 Trials = 12 total trays) and randomized positions
201 within trays. **Vernalized** seeds were placed in a simulated winter growth chamber set to 4°C and
202 9-hour daylength. **Unvernalized** seeds were placed in a simulated summer chamber set to 24°C
203 and 15-hour daylength. Although in the field we expect seeds to primarily emerge in fall or
204 spring, the unvernalized seeds sown in simulated summer conditions readily emerged (Fig. S1).
205 Surprisingly, some seeds in simulated winter conditions also emerged in the cold (Fig. S1).
206 Accordingly, we had to end the planned 4-week vernalization period early (after about 40% of
207 seeds had emerged, 3 weeks in Trial 1 and 1 week in Trial 2) to prevent cold-related mortality.
208 After their vernalization treatments, both growth chambers were set to 17°C and 12-hour
209 daylength to simulate spring/fall equinox conditions (based on local average max temperatures
210 and daylengths in mid-fall and mid-spring).

211 Pots were censused every day for newly emerging seedlings (final seedling emerged on
212 day 33 in Trial 1 and day 18 in Trial 2). Seedlings were defined as having emerged once a stem
213 and both cotyledons were visible. After 3 – 5 weeks of growth, each individual was assigned a
214 categorical growth type (as in 2022 greenhouse common garden), and measurements were taken
215 of plant height, plant diameter, and leaf roundness on the same day by vernalization treatment.
216 Vernalized plants were measured 16 days after unvernalized plants, enabling measurements to be
217 taken after the same mean number of days since emergence in Trial 1, but 11 days apart in Trial 2
218 (staggering measurement points could not be done due to logistical constraints). Height was
219 measured with a ruler as the vertical distance between the soil and the last node (meaning that
220 height was close to 0 for a rosette structure). Overhead photographs and manual tracing in ImageJ
221 were used to measure maximum plant diameter and leaf roundness ($4 \times \text{area}/[\pi \times \text{major axis}^2]$,
222 ranging from 0 to 1, with 1 being a perfect circle) on one leaf/plant for all plants with at least one
223 clearly visible entire leaf (N = 785). Height growth rate was calculated as height in mm/days
224 since emergence (results from alternative calculation as height in mm/diameter in mm provided


225 in supplemental). Although some plants were measured on different days since emergence, our
226 analyses examine height growth rate rather than absolute height, and leaf shape rather than size.
227 Both measures are quantitative indicators of life cycle type, since plants forming a rosette stay
228 close to the ground prior to bolting and form rounder leaves.
229

230 *2024 Greenhouse Experiment*

231 In this experiment, we tested the effects of seed vernalization, gibberellic acid, and light
232 treatments, along with the seed source factors of population and line on life cycle traits in plants
233 grown to maturity (Fig. 1C). Seeds were sourced from two to three lines from each of two sites
234 from the 2022 greenhouse generation (HTR and LRT) plus five lines from fall 2023 collections
235 from one of the same fields used in Schramski et al. (2021, MSU Agronomy Farm, Lansing, MI)
236 using the coordinates they provided (Table S1). For each selfed line, pots (7-cm-diameter) were
237 randomly assigned to one of eight treatment combinations, detailed below, with 5 replicate seeds
238 per pot. Pots were filled with SureMix potting soil. Of the 400 seeds planted, 26% emerged and
239 of those that emerged, 46% survived to flower (substantial mortality resulted from fungal root
240 rot).

241 For **Vernalized** pots, soil was soaked and then the 5 seeds were spread on the surface of
242 the soil. The pots were placed in randomized positions in a growth chamber set to 4°C and 8-
243 hour daylength. Pots were checked weekly for any emerging seedlings and to ensure moist soil
244 conditions. After four weeks, pots were removed from the growth chamber and placed in a
245 greenhouse (Kellogg Biological Station, Hickory Corners, MI). On the same day, **Unvernalized**
246 seeds were planted in pots in the same manner as the vernalized pots and placed in the
247 greenhouse. Note that in this experiment, the vernalization control was untreated seeds because
248 we wanted plants in both treatments to germinate and develop at the same time. Pots were placed
249 on the same greenhouse bench in randomized positions within one of two light treatments:
250 **Shade** pots were placed under a shade tent (shade cloth over PVC pipes, mimicking fall
251 emergence among abundant vegetation), **Full Light** plants were placed in the open (mimicking
252 spring emergence among sparse vegetation). Shaded plants received about 76% less
253 photosynthetically active radiation (based on 20 measurements per treatment with an Accupar
254 LP-80 ceptometer). Plant leaves were sprayed weekly with either **Water** (distilled) or **GA**
255 solution (0.035 g GA₃/L distilled water). All pots were kept well-watered and maintained until
256 all plants had either died or flowered.

257 Pots were censused every 4 days for newly emerging seedlings for the first 16 days, and
258 every 7 days for the next 7 weeks, at which point no further emergence occurred. Plants were
259 also censused weekly for signs of flowering, and plants were marked as having flowered if they
260 contained at least one fully expanded flower. Plant height was measured as the length of the stem
261 from the base of the soil to the last node on days 21, 49, and 64 since planting, along with at the
262 first census in which they flowered. We defined height growth rate as day 64 plant height in mm
263 /days since emergence. Nine weeks after planting, plants were assigned a categorical growth type
264 and leaf roundness was estimated from photos of the largest leaf from one plant per line.

265
266 **Figure 1.** Overview of experimental designs for 2022 Greenhouse Common Garden (A), 2023
267 Growth Chamber Experiment (B) and 2024 Greenhouse Experiment (C).
268

269 *Statistical Analyses*

270 All statistical analyses were done in RStudio running R v. 4.4.2 (R Core Team 2024).
271 The package “emmeans” (Lenth 2024) was used to test significance of model terms (Type III
272 Analyses of Deviance), conduct post-hoc analyses on treatment combination means, and
273 generate estimated marginal means. All plots were made using the package “ggplot2” (Wickham
274 2016). The package “MuMIn” (Bartoń 2025) was used to calculate marginal and conditional R²
275 values for our linear mixed effects models, where marginal is the variance explained by the fixed
276 effects and conditional is the variance explained by both fixed and random effects (Nakagawa
277 and Schielzeth 2012). The difference between conditional and marginal was used to estimate the
278 additional variance in the response explained by adding the random effect of line.

279 For the 2023 growth chamber experiment, we used linear mixed effects models with the
280 response variables of height growth rate (log-transformed to improve normality of residuals) and
281 leaf roundness; the fixed effects of GA treatment (GA vs. Water), seed vernalization treatment
282 (vernalized vs. unvernalized), trial (1 vs. 2), and all two- and three-way interactions plus parent
283 plant type (greenhouse winter annual vs. greenhouse summer annual vs. field summer annual),
284 seed source site, and the temperature at which a plant emerged (4 vs. 17 vs 24 °C); and the
285 random effect of selfed line. We ran similar models except that we replaced GA treatment with
286 number of GA applications to look for different effects of the GA seed soak vs. leaf spray.

287 We used a similar approach to model height growth rate, leaf roundness, and days to first
 288 flower in the 2024 greenhouse experiment, except that a log transformation was not needed to
 289 get normally-distributed residuals, greenhouse light treatment (full light vs. shade) replaced trial,
 290 and parent type and emergence temperature were removed. Additionally, for the leaf roundness
 291 model we removed the three-way interaction since the model did not converge when it was
 292 included, given the reduced sample size from subsampling leaf measurements.

293 For our categorical growth type variable, given that the frequency of Intermediate was
 294 small and unbalanced, we analyzed two binary growth type variables, either grouping
 295 Intermediate with Upright or Rosette. Results for the two grouping methods were quantitatively
 296 similar so we only report the latter grouping. Logistic regressions did not converge due to
 297 probabilities of 1 or 0 in some groups, so instead we ran pairwise two-sample Fisher's exact tests
 298 separately by the fixed effects in our models listed above. For fixed effects with more than two
 299 levels, we adjusted P -values for multiple testing using the Benjamini-Hochberg procedure to
 300 control the False Discovery Rate.

301

302 **Results**

303 *Hypothesis 1: Genetic differentiation in life cycle type*

304 In our 2022 greenhouse common garden, the life cycle type of plants sourced from field-
 305 collected and vernalized seeds varied significantly among 10 collection sites in Michigan,
 306 explaining 15% of the deviance in the response from a saturated model (Fig. S2A, $P = 4.8E^{-5}$).
 307 However, the patterns do not appear to track latitude or average winter temperatures (Table S1;
 308 e.g., lack of similarity between nearby DLF and KNC sites). Because we grew field-collected
 309 seeds in a common environment, these differences reflect some combination of evolved genetic
 310 differentiation and transgenerational parental effects resulting from variation in field
 311 environments.

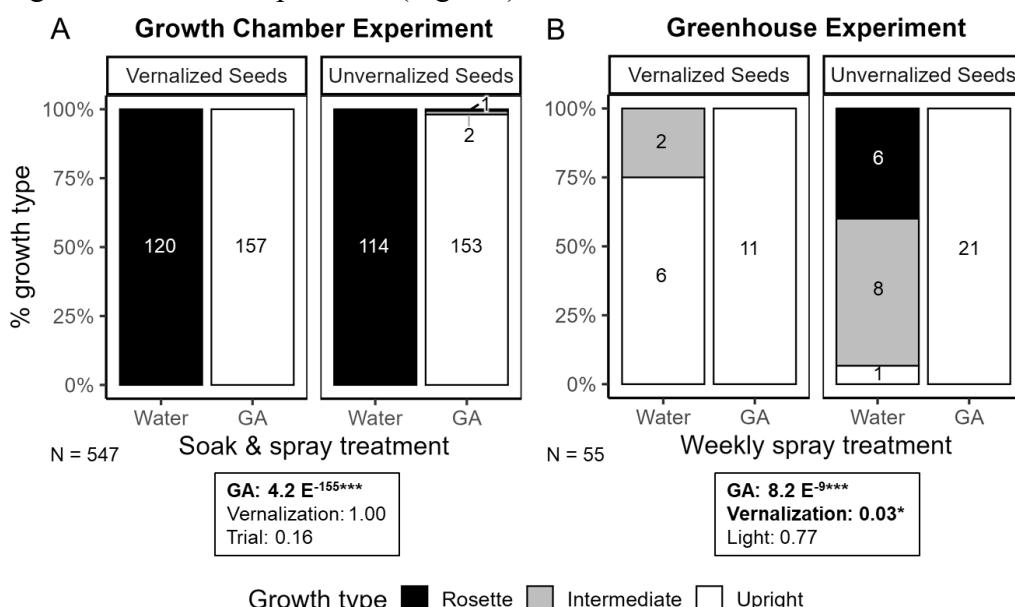
312 We then grew offspring of these 2022 greenhouse plants alongside offspring of field
 313 parents from a subset of four sites in our 2023 growth chamber experiment. In our 2024
 314 greenhouse experiment we grew greenhouse offspring from a subset of two sites, plus offspring
 315 of field parents from a field site used by Schramski et al (2021). In both experiments, source site
 316 did not significantly affect any of our measured variables in either experiment (Fig. S2B,C and
 317 see Fig. 3 boxes for Site effect P -values). This lack of a significant site effect held when
 318 including only offspring of greenhouse parents ($P > 0.23$).

319 In both experiments, we also included multiple genetic lines from each site, expected to
 320 be highly homozygous in this selfing species. Line explained a significant amount of variation in
 321 height growth rate and leaf roundness only in the growth chamber experiment. Even so, line
 322 explained only 2% and 4% of the variance, compared with 37% and 27% explained by GA and
 323 vernalization treatments for height growth rate and leaf roundness, respectively. The lack of
 324 variation in life cycle type explained by variation between and within populations is consistent
 325 with the hypothesis that life cycle is primarily determined via plasticity.

326

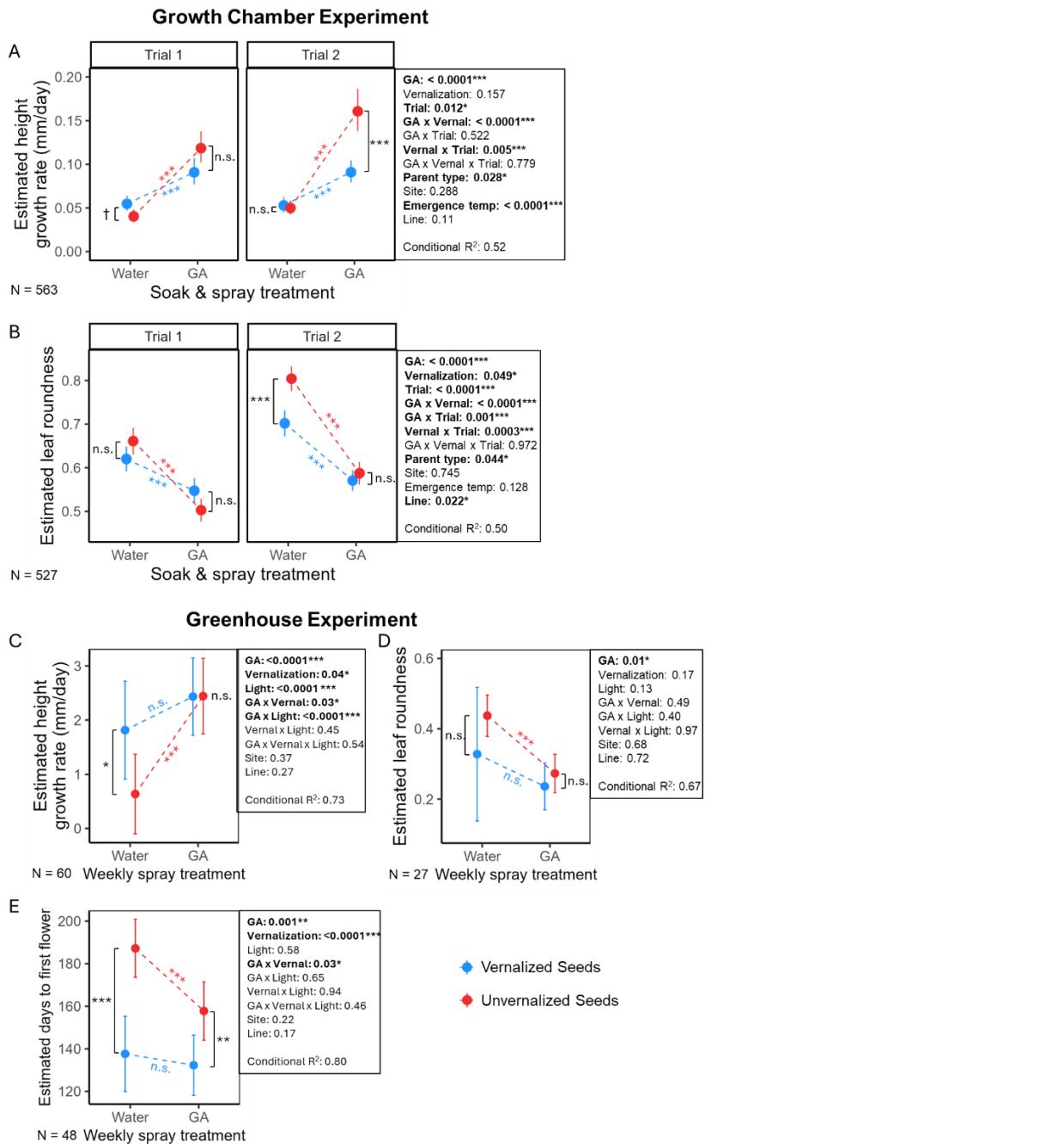
327 *Hypothesis 2a: Transgenerationally plastic response to parent life cycle type*

328 In the 2023 growth chamber experiment we included seeds generated by parents
 329 exhibiting the summer annual growth type in the greenhouse, winter annual growth type in the
 330 greenhouse, or summer annual growth type in the field. We predicted that offspring of summer
 331 annual parents would be more likely to exhibit a winter annual life cycle than offspring of winter
 332 annual parents, enabling an alternation of life cycles. Parent type had a small but significant


333 effect on height growth rate, where offspring of greenhouse-grown summer annuals had slightly
 334 greater height growth rate compared with the other two types. Therefore, there was only a
 335 significant difference for one of two parent life cycle comparisons (in which other environmental
 336 variation but not genetic line was controlled) and the effect was opposite our prediction of
 337 parent-offspring mismatch. There was also a small but significant effect of parent type on leaf
 338 roundness, which was driven by offspring of field-grown summer annuals having slightly
 339 rounder leaves than offspring of greenhouse-grown winter annuals (with offspring of
 340 greenhouse-grown summer annuals in between the other two). The pattern was therefore in the
 341 predicted direction of parent-offspring mismatch for both comparisons but only significant for
 342 one of them. Categorical assignment to the upright summer annual type was similar among the
 343 three parent types ($P = 0.78, 0.90, 0.98$ for the three comparisons).

344

345 *Hypothesis 2b: Plastic responses to seed vernalization*


346 Contrary to our prediction that all cold-vernalized seeds would develop as summer
 347 annuals, when seeds were vernalized for three weeks and grown in a common greenhouse
 348 environment, an average of 65% of plants formed an overwintering rosette structure indicative of
 349 a winter annual life cycle. Similarly, 66% of plants only flowered after receiving additional cold
 350 through rosette vernalization, after failing to bolt for 11 weeks (87% of these were Rosette types;
 351 Fig. S2A).

352 In the 2022 and 2023 experiments, the overall effects of seed vernalization were also
 353 variable, but tended to increase summer annual type characteristics, in line with our prediction.
 354 Specifically, seed vernalization increased summer annual characteristics for all measures in the
 355 greenhouse experiment (though not significantly in the case of leaf roundness; Fig. 2B, Fig. 3C-
 356 E) and for leaf roundness in the growth chamber experiment (Fig. 3B), but not for height growth
 357 rate in the growth chamber experiment (Fig. 3A).

358

359 **Figure 2.** Qualitative measure of life cycle growth type in 2023 Growth Chamber (A) and 2024
 360 Greenhouse (B) Experiments. Colored bars show the proportion of plants categorically assigned
 361 to Rosette (black), Intermediate (grey), or Upright (white) growth, with counts shown within
 362 bars. Panels separate seed vernalization treatments. Numbers in bars are counts. The boxes show
 363 Fisher's Exact Test P -values for the indicated groups.

364
365
366
367
368
369
370
371
372
373
374

Figure 3. Quantitative measures of life cycle type in 2023 Growth Chamber (A and B) and 2024 Greenhouse (C to E) Experiments: height growth rate (A and C), leaf roundness (B and D), and flowering time (E). Colors separate seed vernalization treatments and the slope of dotted lines is the effect of adding GA within vernalization treatment. Panels separate trials in A and B. Points are estimated marginal means after accounting for the other effects in the model and error bars are 95% confidence intervals. The box gives the P-values for all model effects from a Type III Analysis of Deviance for fixed effects and likelihood ratio test for the random effect of Line. Asterisks on lines indicate significance of GA effect within vernalization groups, while asterisks between points indicate significance of vernalization effect within soak & spray treatment groups from Tukey post-hoc tests. ^{n.s.} P > 0.10, *P < 0.05, **P < 0.01, ***P < 0.001.

375 *Hypothesis 2c: Plastic response to offspring light environment*

376 In the 2024 greenhouse experiment, we tested our prediction that shaded plants would be
 377 more likely to develop winter annual characteristics, particularly if seeds were not vernalized;
 378 that is, mimicking late summer or fall germination of seeds produced that year. However, light
 379 treatment did not significantly affect growth type assignment ($P = 0.77$), leaf roundness ($P =$
 380 0.13), or days to first flower ($P = 0.58$), and did not significantly interact with vernalization
 381 treatment for any measure ($P > 0.45$). While shaded plants had lower overall height growth rate
 382 (-1.7 mm/day) and were less affected by GA spray, given that light treatment did not affect any
 383 other measure of life cycle type, we interpret this result as simply reflecting the stunted growth
 384 expected from light-limited plants, rather than the limited elongation of rosette-forming plants.
 385

386 *Hypothesis 3: Seed vernalization response mediated by upregulation of GA*

387 In line with our predictions, the application of GA strongly and significantly increased all
 388 of our measures of summer annual type growth across both experiments. Specifically, plants
 389 exposed to exogenous GA were more likely to be assigned the Upright growth type (Fig. 2),
 390 extended their height at a faster rate (Fig. 3A,C), had more elongated leaves (Fig. 3B,D), and
 391 flowered sooner (Fig. 3E). This pattern held in the growth chamber experiment when excluding
 392 plants in the vernalization treatment that unexpectedly emerged while still in the cold (Fig. S3) or
 393 when quantifying growth rate as plant height per plant diameter rather than per day (Fig. S4).
 394 Across our life cycle measures, applying GA only to seeds rather than only to leaves generally
 395 had a weaker effect (Fig. S5), but this comparison was not replicated and so should be
 396 interpreted with caution.

397 We also predicted that if GA upregulation is a mechanism by which seed vernalization
 398 influences life cycle type, then the two treatments would be at least partially redundant. This
 399 would manifest as a statistical interaction between GA and vernalization treatments whereby
 400 each factor would have a stronger effect in the absence of the other. We found this predicted
 401 pattern for all measures in the greenhouse, but only for leaf roundness in the growth chamber.
 402 Specifically, in the greenhouse experiment, seed vernalization in the absence of GA or GA in the
 403 absence of seed vernalization caused nearly all plants to be assigned Upright (interaction not
 404 statistically testable, Fig. 2B). For leaf roundness in both experiments, along with flowering time
 405 and height growth rate in the greenhouse experiment, the vernalization effect was larger in
 406 magnitude in the water control group compared with the GA-treated group (compare differences
 407 between red and blue points within treatments in Fig. 3B-E; although note that this was not
 408 significant for leaf roundness in the greenhouse). Similarly, for these measures, the GA effect
 409 was larger in magnitude in the unvernalized group than the vernalized group (compare slopes of
 410 red and blue lines in Fig. 3B-E). However, seed vernalization did not affect growth type
 411 assignment within either the GA or Water groups in the growth chamber experiment. For height
 412 growth rate in the growth chamber experiment, the magnitude of the GA effect was larger in
 413 unvernalized seeds as predicted, but the vernalization effect switched from slightly positive in
 414 the water-treated group (+0.009 mm/day, $P = 0.07$) to negative in the GA-treated group (-0.05
 415 mm/day, $P < 0.0001$), opposing our prediction. Although the three-way interaction was not
 416 significant, we note that this surprising negative effect of vernalization on height growth rate in
 417 the GA-treated group was only apparent in Trial 2, which had the most truncated period of
 418 seed vernalization due to widespread germination in the cold (Fig. S1).
 419

420 **Discussion**421 *Life cycle type differentiation is primarily plastic rather than genetic*

422 We found that field-collected seeds from 10 Michigan sites vernalized and grown in a
 423 common greenhouse environment varied between and within sites in morphological growth type
 424 and requirement for further vernalization of rosettes. However, when we grew offspring of plants
 425 from subsets of these sites plus new collections from a site used by Schramski et al. (2021), site
 426 differences largely disappeared. For example, sites KNC and DLF were some of the most
 427 divergent in the 2022 greenhouse but did not significantly differ in the 2023 growth chamber.
 428 Although, we only grew seeds from six of the 10 originally sampled sites, our results suggest that
 429 the differences in traits associated with life cycle type found in the first greenhouse generation
 430 primarily reflect transgenerational plasticity, rather than evolved genetic differentiation. The low
 431 levels of differentiation between presumably highly homozygous families further supports the
 432 idea that variation in life cycle type is not strongly predicted by genetic variation. Although
 433 Schramski et al. (2021) did not statistically test for differences among their four seed families
 434 from each of four fields, the highly consistent responses of all plants to their experimental
 435 treatments suggests little genetic variation for life cycle type, consistent with our study.
 436 However, genetic differentiation across a broader geographic range in this widely distributed
 437 weed remains possible and should be tested in future studies.

438

439 *Mixed evidence for transgenerational effects of parent life cycle type*

440 In addition to comparing field-collected vs. greenhouse-grown seeds, we also explicitly
 441 looked for transgenerational effects of parental life cycle type on offspring life cycle type in our
 442 growth chamber experiment. We predicted that differences in the conditions experienced by
 443 summer annual versus winter annual parents would reduce parent-offspring resemblance.
 444 Alternating parent-offspring life cycles might be adaptive in nature if the parent environment is
 445 strongly predictive of the offspring environment (Uller 2008) whereby seeds are shed by winter
 446 annual parents in favorable conditions for summer annual emergence, and vice versa. A similar
 447 pattern has been found previously in the facultative winter annual *Isatis violascens*, where parent
 448 germination season biases seeds towards the dimorphic dormancy type that promotes
 449 germination in a different season than the parent (Lu et al. 2016). First, our study confirms that
 450 parents of both life cycle types can produce offspring of both life cycle types, whereas this was
 451 previously only shown for summer annual type parents (Schramski et al. 2021). We found
 452 evidence for a transgenerational effect in the predicted direction for leaf roundness but not height
 453 growth rate. Future studies should include field winter annual parents as a comparison group to
 454 provide a more complete picture of transgenerational plasticity in life cycle type. Overall, these
 455 results suggest that transgenerational plasticity plays some role in life cycle type differentiation,
 456 but the specific environmental cues shaping these responses remain unclear.

457

458 *Some evidence for a plastic response of life cycle type to seed vernalization but no evidence for a*
 459 *plastic response to light level*

460 Given that summer annuals emerge in spring after cold and wet winter conditions, we
 461 expected seeds exposed to simulated winter conditions to emerge as summer annuals. Consistent
 462 with this expectation, we found that exposing seeds to cold and wet conditions for three to four
 463 weeks increased summer annual growth characteristics, but not in all plants. In our greenhouse
 464 common garden in which all seeds were vernalized, only about a third of plants developed as
 465 summer annuals. Among plants that did not receive GA in our two experiments, all plants

466 developed winter annual characteristics regardless of vernalization treatment in the growth
467 chamber, yet seed vernalization increased the chances of developing summer annual
468 characteristics in our smaller sample of greenhouse plants. These results contrast markedly from
469 those of Schramski et al. (2021), who classified no unvernalized plants as summer annuals, but
470 88% and 100% of plants vernalized for two weeks and four weeks as summer annuals
471 respectively. That study and all seed vernalization trials in the present study utilized the same
472 temperature (4°C) and the same or similar photoperiod (8 – 9 hours). These results demonstrate
473 that while seed vernalization plays a role in life cycle determination, its variable effects point to
474 interactions with other environmental or genetic factors.

475 One possible interacting environmental factor we tested was the amount of available
476 light. Given that summer annuals emerge in sparsely vegetated spring, while winter annuals
477 emerge in heavily vegetated fall, we expected cold temperatures followed by higher light
478 availability to result in a higher likelihood of summer annual growth. However, results from our
479 greenhouse experiment did not support this prediction. A systematic field survey documenting
480 the occurrence of winter vs. summer annual horseweed across its range, along with habitat
481 characteristics where these plants are found (e.g. mean winter temperatures, land use type and
482 management) could suggest additional environmental factors that play a role in life cycle type
483 differentiation and would provide key baseline data for documenting changes in proportional life
484 cycle type occurrence over time. Studies tracking the outcomes of replicate seeds planted in
485 fields varying in known environmental conditons would also be useful.

486 Overall, the plastic ability of facultative winter annuals to adjust their life cycle to suit
487 their current seasonal environment may be adaptive. Preliminary data suggest that plants
488 expressing the seasonally mismatched growth type (rosette in summer annual field and upright in
489 winter annual field) have lower survival (N = 23 total flowered/247 transplanted seedlings). A
490 highly flexible life cycle within populations may be particularly beneficial in crop fields that are
491 actively managed to prevent horseweed growth.

492 493 *Gibberellic Acid regulation may be a mechanism for horseweed life cycle type differentiation*

494 Alongside our tests of genetic and environmental factors influencing horseweed life cycle
495 type differentiation, we also sought to test a hypothesized mechanism by which such
496 differentiation may occur. In line with our predictions, exogenous application of the growth
497 hormone Gibberellic Acid (GA) increased summer annual characteristics. Also as predicted, this
498 GA effect was stronger in unvernalized plants, while the effects of seed vernalization (in cases
499 where it also increased summer annual characteristics) were stronger in plants not receiving GA.
500 These results suggest that upregulation of Gibberellic Acid may be an important mechanism by
501 which plants plastically respond to experiencing a period of cold prior to germination. It remains
502 unclear why we did not find the predicted effect of seed vernalization and its interaction with GA
503 for height growth rate in the growth chamber experiment, which was one of seven measures of
504 life cycle type across both experiments. One possibility relates to the germination of many seeds
505 during seed vernalization at 4°C, which was surprising given prior studies reporting base
506 germination temperatures of 8-14°C (Steinmaus et al. 2000, Tozzi et al. 2014) and the fact that it
507 never occurred in the common garden or greenhouse experiment. Although results were similar
508 when excluding plants that emerged in the cold, all or a larger fraction of seeds may have begun
509 the germination process, changing their development. We note that the height growth rates for
510 these plants were very low in comparison with the greenhouse plants (mean = 0.1 vs. 2.0
511 mm/day), potentially indicating stunted growth.

512 It has long been hypothesized that GA and vernalization act through a common
513 mechanism, given the ability of exogenous GA to initiate flowering in plants that normally
514 require vernalization (Zeevaart 1983). For example, the native winter annual ecotype of
515 *Raphanus raphanistrum* could be induced to flower without rosette vernalization by exogenous
516 application of GA, whereas the weedy summer annual ecotype showed little response to GA
517 (Garrison 2022). This mechanism has been studied in detail in *Arabidopsis thaliana*, where
518 vernalization and GA both act on the floral integrator gene SOC1 (Moon et al. 2003). Syntheses
519 on the interactive effects of temperature and GA do not generally distinguish between a cold
520 period at the seed versus the seedling stage, although Chouard (1960) reported that GA seed
521 treatment cannot replace seed vernalization. Our study extends prior work by suggesting that
522 horseweed seeds experiencing cold winter conditions upregulate GA production, helping to
523 stimulate development as a summer annual. Interestingly, applying GA at the seedling rather
524 than at the seed stage was generally more effective in producing plants with summer annual
525 traits. A similar tendency for GA spray compared with seed soak to cause accelerated life cycle
526 traits has been found previously in three annual crops (Chakravarti 1958, Wilson 1981). This
527 indicates that although the key environmental cue of cold temperatures may be experienced as a
528 seed, the seedling stage may be a critical period for hormonal regulation. Further studies in other
529 facultative winter annual species are needed to determine the generality of a GA-mediated seed
530 vernalization mechanism for life cycle differentiation. In addition, future studies might compare
531 endogenous levels of GA in plants of different life cycle types growing in the field to test the
532 prediction that summer annual plants will show higher levels of endogenous GA. Finally,
533 comparing the life cycle characteristics of GA-deficient mutants with control plants subjected to
534 multiple vernalization treatments would more directly link GA upregulation to the summer
535 annual life cycle.

536

537 *Applied significance*

538 A review of 19 common Canadian winter annual agricultural weeds found that the
539 facultative ability to adopt a winter or summer annual life cycle predominates in these species,
540 yet the authors noted a general lack of information on many important aspects of their biology
541 (Cici and Acker 2009). Gaining a better understanding of the genetic and environmental factors
542 contributing to variation in horseweed life cycle types has implications for the management of
543 this widespread and problematic agricultural weed. According to the most recent surveys of US
544 and Canadian farmers from the Weed Science Society of America, horseweed is among the top
545 five most troublesome weeds in winter cereal grains, fruits, nuts, and soybeans (Van Wychen
546 2022, Van Wychen 2023). Of particular note for management, summer annual type plants, and
547 especially those of resistant biotypes, were found to be more resistant to glyphosate when grown
548 in a greenhouse (Schramski et al. 2021). This increased resistance was partially attributable to
549 reduced glyphosate retention (Fisher et al. 2023). Prior studies in horseweed and other facultative
550 winter annual populations have also found that by skipping the overwintering stage, spring-
551 emerging summer annuals are more likely to survive to seeding but produce fewer seeds on
552 average than fall-emerging winter annuals (Regehr and Bazzaz 1979, Marks and Prince 1981,
553 Sans and Masalles 1993). Our study indicates that horseweed plants expressing either life cycle
554 type may plastically switch to the other type in the next generation, potentially completing two
555 generations per year. Therefore, switching crop life cycle or eliminating only those horseweed
556 plants with the same life cycle type as the desired crop are unlikely to prevent horseweed
557 infestation. Manipulating the winter temperatures or levels of GA experienced by horseweed

558 seeds may allow managers to bias life cycle type differentiation in a favorable direction.
 559 Recently observed increases in the summer annual type in Michigan are less likely to be due to
 560 rapid evolution than to a change in the environment or the differential survival of the two life
 561 cycle types.
 562

563 **Funding:** This work was supported by the Education and Workforce Development Program of
 564 the U.S. Department of Agriculture's National Institute of Food and Agriculture [2023-67011-
 565 40398 to RW] and the Research Experiences for Undergraduates Program of the U.S. National
 566 Science Foundation Division of Biological Infrastructure [2150104].
 567

568 **Conflicts of Interest:** The authors declare no conflicts of interest.
 569

570 **Author Contributions:** All authors helped design the experiments; RW, BC, GE, and IB
 571 conducted experiments; RW analyzed the data; RW and BC drafted the manuscript; all authors
 572 reviewed and approved the final manuscript.
 573

574 **Acknowledgements:** We thank Kate Shaw and Mark Hammond for greenhouse and growth
 575 chamber management; Ava Garrison for assistance with watering; and Second Spring Farm,
 576 Natural Cycles Farm, and DeLano Farms for seed collection access. This manuscript was
 577 improved by comments from the Conner Lab and XX anonymous reviewers. This is KBS
 578 contribution no. XX.

579 Literature Cited

580 **Auge GA, Leverett LD, Edwards BR, Donohue K. 2017.** Adjusting phenotypes via within-and
 581 across-generational plasticity. *New Phytologist* **216**: 343–349.

582 **Best K, Mc Intyre G. 1976.** Studies on the flowering of *Thlaspi arvense* L. III. The influence of
 583 vernalization under natural and controlled conditions. *Botanical Gazette* **137**: 121–127.

584 **Bloomer R, Dean C. 2017.** Fine-tuning timing: natural variation informs the mechanistic basis
 585 of the switch to flowering in *Arabidopsis thaliana*. *Journal of Experimental Botany* **68**:
 586 5439–5452.

587 **Buhler DD, Owen MD. 1997.** Emergence and survival of horseweed (*Conyza canadensis*).
 588 *Weed Science* **45**: 98–101.

589 **Chakravarti S. 1958.** Gibberellic acid and vernalization. *Nature* **182**: 1612–1613.

590 **Charbonneau A, Tack D, Lale A, et al. 2018.** Weed evolution: Genetic differentiation among
 591 wild, weedy, and crop radish. *Evolutionary Applications* **11**: 1964–1974.

592 **Chouard P. 1960.** Vernalization and its relations to dormancy. *Annual Review of Plant
 593 Physiology* **11**: 191–238.

594 **Cici SZH, Van Acker RC. 2009.** A review of the recruitment biology of winter annual weeds in
 595 Canada. *Canadian Journal of Plant Science* **89**: 575–589.

596 **Davis VM, Johnson WG. 2008.** Glyphosate-resistant horseweed (*Conyza canadensis*)
 597 emergence, survival, and fecundity in no-till soybean. *Weed Science* **56**: 231–236.

598 **Dong B, Deng Y, Wang H, et al. 2017.** Gibberellic acid signaling is required to induce
 599 flowering of chrysanthemums grown under both short and long days. *International Journal
 600 of Molecular Sciences* **18**: 1259.

601 **Fisher JL, Sprague CL, Patterson EL, Schramski JA. 2023.** Investigations into differential

602 glyphosate sensitivity between two horseweed (*Conyza canadensis*) growth types. *Weed*
 603 *Science* **71**: 22–28.

604 **Forrest J, Miller-Rushing AJ.** **2010.** Toward a synthetic understanding of the role of phenology
 605 in ecology and evolution. *Philosophical Transactions of the Royal Society B* **365**: 3101–
 606 3112.

607 **Garrison A.** **2022.** *Adaptation to agriculture in a serious crop weed, weedy radish (Raphanus*
 608 *raphanistrum)*. PhD Thesis, Michigan State University, USA.

609 **Garrison AJ, Norwood LA, Conner JK.** **2024.** Plasticity-mediated persistence and subsequent
 610 local adaptation in a global agricultural weed. *Evolution*, **78**: 1804–1817.

611 **Gupta R, Chakrabarty S.** **2013.** Gibberellic acid in plant: still a mystery unresolved. *Plant*
 612 *Signaling & Behavior* **8**: e25504.

613 **Hall MC, Willis JH.** **2006.** Divergent selection on flowering time contributes to local adaptation
 614 in *Mimulus guttatus* populations. *Evolution* **60**: 2466–2477.

615 **Huberman M.** **1941.** Why phenology? *Journal of Forestry* **39**: 1007–1013.

616 **Kanomanya J, Cussans J, Moss S, Ober E, Liu C, Coutts S.** **2025.** Adaptation of
 617 grassweeds to spring cropping through changes in germination, flowering time and
 618 fecundity. *Scientific Reports* **15**: 21492.

619 **Khan M, Masroor A, Gautam C, et al.** **2006.** Effect of gibberellic acid spray on performance
 620 of tomato. *Turkish Journal of Biology* **30**: 11–16.

621 **Landers K.** **1995.** Vernalization responses in narrow-leaved lupin (*Lupinus angustifolius*)
 622 genotypes. *Australian Journal of Agricultural Research* **46**: 1011–1025.

623 **Lang A, Reinhard E.** **1961.** Gibberellins and flower formation In: Gould R, ed. *Advances in*
 624 *Chemistry. Gibberellins*. ACS Publications, 71–79.

625 **Lenth RV.** **2024.** emmeans: estimated marginal means, aka least-squares means.

626 **Lu JJ, Tan DY, Baskin JM, Baskin CC.** **2014.** Germination season and watering regime, but
 627 not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual.
 628 *PLoS One* **9**: e102018.

629 **Lu JJ, Tan DY, Baskin CC, Baskin JM.** **2016.** Effects of germination season on life history
 630 traits and on transgenerational plasticity in seed dormancy in a cold desert annual. *Scientific*
 631 *Reports* **6**: 25076.

632 **Main CL, Steckel LE, Hayes RM, Mueller TC.** **2006.** Biotic and abiotic factors influence
 633 horseweed emergence. *Weed Science* **54**: 1101–1105.

634 **Marks M, Prince S.** **1981.** Influence of germination date on survival and fecundity in wild
 635 lettuce *Lactuca serriola*. *Oikos*: 326–330.

636 **Mennan H, Ngouajio M.** **2006.** Seasonal cycles in germination and seedling emergence of
 637 summer and winter populations of catchweed bedstraw (*Galium aparine*) and wild mustard
 638 (*Brassica kabrer*). *Weed Science* **54**: 114–120.

639 **Meyer SE, Nelson DL, Carlson SL.** **2004.** Ecological genetics of vernalization response in
 640 *Bromus tectorum* L. (Poaceae). *Annals of Botany* **93**: 653–663.

641 **Nakagawa S, Schielzeth H.** **2013.** A general and simple method for obtaining R2 from
 642 generalized linear mixed-effects models. *Methods in Ecology and Evolution*, **4**: 133–142.

643 **Purdom W, Glover J.** **2017.** Effects of pre-treatment of gibberellic acid solution on *Musa*
 644 *sikkimensis* seeds. *Sibbaldia: the International Journal of Botanic Garden Horticulture*: 31–
 645 37.

646 **R Core Team.** **2024.** R: A Language and Environment for Statistical Computing.

647 **Regehr D, Bazzaz F.** **1979.** The population dynamics of *Erigeron canadensis*, a successional

648 winter annual. *The Journal of Ecology*: 923–933.

649 **Sans F, Masalles R. 1994.** Life-history variation in the annual arable weed *Diplotaxis erucoides*
650 (Cruciferae). *Canadian Journal of Botany* **72**: 10–19.

651 **Schramski JA, Sprague CL, Patterson EL. 2021.** Environmental cues affecting horseweed
652 (*Conyza canadensis*) growth types and their sensitivity to glyphosate. *Weed Science* **69**:
653 412–421.

654 **Shah SH, Islam S, Mohammad F, Siddiqui MH. 2023.** Gibberellic acid: a versatile regulator
655 of plant growth, development and stress responses. *Journal of Plant Growth Regulation* **42**:
656 7352–7373.

657 **Smisek A. 1995.** *Resistance to paraquat in Erigeron canadensis L.* MS Thesis, University of
658 Western Ontario, Canada.

659 **Steinmaus SJ, Prather TS, Holt JS. 2000.** Estimation of base temperatures for nine weed
660 species. *Journal of Experimental Botany* **51**: 275–286.

661 **Tozzi E, Beckie H, Weiss R, et al. 2014.** Seed germination response to temperature for a range
662 of international populations of *Conyza canadensis*. *Weed Research* **54**: 178–185.

663 **Uller T. 2008.** Developmental plasticity and the evolution of parental effects. *Trends in Ecology
& Evolution* **23**: 432–438.

664 **Van Wychen L. 2022.** 2022 Survey of the most common and troublesome weeds in broadleaf
665 crops, fruits & vegetables in the United States and Canada. *Weed Science Society of America
National Weed Survey Dataset*.

666 **Van Wychen L. 2023.** 2023 Survey of the Most Common and Troublesome Weeds in Grass
667 Crops, Pasture & Turf in the United States and Canada. *Weed Science Society of America
National Weed Survey Dataset*.

668 **Weaver SE. 2001.** The biology of Canadian weeds. 115. *Conyza canadensis*. *Canadian Journal
of Plant Science* **81**: 867–875.

669 **Wickham H. 2016.** *ggplot2: elegant graphics for data analysis*. New York: Springer-Verlag.

670 **Wilson JE. 1981.** Effects of formulation and method of applying gibberellic acid on flower
671 promotion in cocoyam. *Experimental Agriculture* **17**: 317–322.

672 **Zeevaart JA. 1983.** Gibberellins and flowering. *The Biochemistry and Physiology of
Gibberellins* **2**: 333–373.

673

674

675

676

677